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Singular Value Decomposition (SVD)

(Source: Gilbert Strang, MIT course; other online sources on linear algebra)

1. SVD Definition and Meaning:

An arbitrary matrix A, of size m x n (m rows, n columns), can be written as a Singular
Value Decomposition (SVD) where .

 and  are orthogonal, or orthonormal, matrices (i.e., , or  and
similarly for ).
Note that SVD implies , so  is an orthonormal basis set in the Row Space,
that maps to an orthonormal basis set  in the Column Space scaled by the Singular
Values , when transformed by the matrix !

, so  transforms the columns of , so it is termed Column
Space (See Jonathon Shlens, https://arxiv.org/abs/1404.1100).

, so  transforms the rows of , so  is termed to be in the
Row Space (See Jonathon Shlens, https://arxiv.org/abs/1404.1100).

Geometrically, we can consider  and  to be rotations, and  to be scaling. So every
matrix can be represented as a rotation, followed by scalar stretching, then another
rotation.

2. SVD Proof:

0.  can be shown by looking at the matrix  and . Clearly both are
symmetric matrices (i.e., it is its own transpose), and are square (n x n, and m x m in
size, respectively).

1. First let's look at . Since it is square, we can find a set of eigenvectors and
eigenvalues such that , where  is the matrix whose columns are
the eigenvectors, and  is the diagonal matrix with the corresponding eigenvalues.

2. Since  is symmetric,  is an orthogonal (orthornormal) matrix (or can be chosen
to be so) since the eigenvectors of symmetric matrices are orthogonal and can be
chosen to be orthonormal.
(Source: Spectral Theorem states that a symmetric matrix can be written as 
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where  is an orthogonal matrix. See how symmetric matrices have an orthonormal
eigenbasis: dept.math.lsa.umich.edu/~speyer/LinearAlgebraVideos/Lecture10a.pdf)

3. Also  is Real because  is symmetric. (Source:
https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/resources/lecture-25-
symmetric-matrices-and-positive-definiteness/ shows that eigenvalues are real for
symmetric matrices.)

4. In fact,  is also positive semi-definite (PSD), i.e. its eigenvalues are positive or
equal to 0.

Proof: For any vector ,  by definition of
the  norm. Now suppose  is any eigenvector of , with eigenvalue . Then

. Since ,  must
necessarily  as well. Q.E.D. (Proof for  being PSD was not explicitly
found in the MIT Strang lecture videos, but the initial part of the proof was found
at https://statisticaloddsandends.wordpress.com/2018/01/31/xtx-is-always-
positive-semidefinite/)

5. Intermediate Summary:

Putting this all together, we have an n x n matrix

where  is orthogonal, and  is diagonal and contains the eigenvalues
corresponding to  that are .
Similarly, the m x m matrix

where  is orthogonal, and  is diagonal and contains the eigenvalues
corresponding to  that are .
Note that the eigenvalues of  and  are the same except for that one may
have zero(s) that is(are) not present in the other. These contribute to the Null
Space.

6. Defining :

If , then , since the 2 matrices should be the same.
If , to accommodate the  different sizes, let's define  to be m x n in
size. Its top-left part will be the square root of , whichever is smaller in
dimensions. The rest will be filled with 0. (Note: Here in taking the square root, we
have used the fact that , which comes from  or  being
positive semi-definite.)
Now note that , and is m x m in size. Similarly , and is n x
n in size.
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7. Putting pieces together for SVD:

Recall , which will be our starting point. This can be written as
, since  is orthogonal.

Now insert : .
Since  is orthogonal, , , where  is the m x m Identity Matrix.
Now insert : .
Factor: 

.

3. How to decompose  using SVD:

Using the proof of SVD above, we now know how to explicitly construct  such
that .
Solving : Find eigen solutions of , i.e., .
Solving : Find eigen solutions of , i.e., .
Solving : Take the square root of , fill with zeros to make it same size as .

Note: For Principal Component Analysis (PCA), build  so that the singular
values are in descending order from top to bottom, which is proportional to the
"importance" of the components.
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0. References:

1. Jonathon Shlens, "A Tutorial on Principal Component Analysis," arXiv:1404.1100 (2014)
https://arxiv.org/abs/1404.1100

Shlens uses (n) instead of (n-1) for the denominator in the variances and
covariances. The latter is typically used in other sources, likely because others
consider sampling of a population, whereas Shlens may be assuming the whole
population is used (Shlens does mention this "practice" in footnote 2). In my
summary, I have corrected this to (n-1),
SNR defined by Shlens is the ratio of the Signal Variance to the Noise Variance.
While this seems to be what is necessary for the toy spring example provided, I
don't think this is widely accepted as the definition of SNR. Typically in
engineering, SNR is defined as Signal/Noise = (Mean of Signal)/(Standard
Deviation of Noise). Perhaps a different word than "SNR" may be appropriate for
the PCA paper.

Principal Component Analysis (PCA)
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2. Jeff Jauregui, "Principal component analysis with linear algebra" (August 31, 2012)
https://www.math.union.edu/~jaureguj/PCA.pdf

1. PCA Goal:

"PCA provides a roadmap for how to reduce a complex data set to a lower dimension to
reveal the sometimes hidden, simplified structures that often underlie it."
"The goal of principal component analysis is to identify the most meaningful basis to re-
express a data set. The hope is that this new basis will filter out the noise and reveal
hidden structure."

"Is there another basis, which is a linear combination of the original basis, that
best re-expresses our data set?"

2. PCA Assumptions:

"By positing reasonably good measurements, quantitatively we assume that directions
with largest variances in our measurement space contain the dynamics of interest."

This means that the features with larger variances are more important. This
sometimes is not necessarily true, and at times require scaling to correct.

3. Covariance Matrix:

Suppose we have m features (original m measurement "basis" vectors), and n
measurements (samples of measurements, for example, at different times).
Let  be an m x n matrix containing all measurement data, where each of the m rows
represents all measurements for the mth feature (or measurement type). Also the mean
of each row (of n measurements or samples) is subtracted from each row (so each row
of  has 0 mean).

Covariance Matrix 

 is an m x m matrix.
Diagonals of  are the variances- Large values correspond to interesting
structure, per assumption.
Off-diagonals of  are the covariances- Larger values correspond to redundancy
(since the corresponding features can predict each other, and hence one can be
removed with little impact).

4. PCA and newly transformed covariance matrix, , from :

Goal of PCA: Find a transformation of basis so that the diagonals (variances, or relevant
signals) of the new covariance matrix is maximized, and the off-diagonals (covariances,
or redundancy) are minimized.
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Explicitly, find an orthonormal transformation  such that the covariance
matrix in , i.e. , is a Diagonal Matrix.
Also let's sort by importance, using variance, so that each successive dimension
is ranked in order (top-left being most important, and bottom-right element being
least important).

5. PCA Construction:

0. (Shlens' paper describes eigenvector decomposition and SVD separately, which was
confusing and disjointed for me. So I have re-organized this using SVD.)

1. Let  be the original m x n measurement matrix (m features/types, n
samples/measurements). (Note, this is opposite of the SVD notes above)

2. Let  be the n x m matrix (  in the SVD notes, with size index

flipped).

3.  (the m x m Covariance Matrix).

4. By SVD,  (  is an m x m matrix)
5. Rearranging, .
6. So  transforms  into the diagonal matrix  as desired by PCA!

The columns of  are the orthonormal eigenvectors of  (since
). "Therefore, the columns of V are the principal components of X."

In other words,  spans the row space , and hence spans the

column space of .

7. Converting SVD for  to SVD for the new matrix :

 remain the same.
Only the singular values need to be scaled to .

This can be seen, or rather justified, from the definition of SVD: .
Caution: It is worth confirming that the SVD algorithm used confirms this. For
NumPy.linalg.svd in 03/2025, this was true.
Python code to check given below.

# Do SVD on Y = 1/\sqrt{n-1} A:

U, s, Vh = np.linalg.svd(A, full_matrices=True)

Y = A / np.sqrt(A.shape[0] - 1)

Unew, snew, Vhnew = np.linalg.svd(Y, full_matrices=True)

# Compare

print('Is SVD U same from A vs. Y = 1/\sqrt{n-1} A?', np.allclose(U, Unew))

print('Is SVD s same from A vs. Y = 1/\sqrt{n-1} A?', np.allclose(s, snew))

print('Is SVD Vh same from A vs. Y = 1/\sqrt{n-1} A?', np.allclose(Vh, Vhnew))
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# Check that s is scaled:

print('Is SVD s from Y = 1/\sqrt{n-1} A, same as s_original/\sqrt{n-1} \

where s_original is the SVD s from A?', \

np.allclose(s/np.sqrt(Xused.shape[0] - 1), snew))
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