SVD and PCA Theory

Joseph S. Choi

03/2025

Singular Value Decomposition (SVD)

(Source: Gilbert Strang, MIT course; other online sources on linear algebra)

- 1. SVD Definition and Meaning:
 - \circ An arbitrary matrix A, of size m x n (m rows, n columns), can be written as a Singular Value Decomposition (SVD) where $A=U\Sigma V^T$.
 - $\circ~U$ and V are orthogonal, or orthonormal, matrices (i.e., $UU^T=I$, or $U^{-1}=U^T$ and similarly for V).
 - \circ Note that SVD implies $AV=U\Sigma$, so V is an orthonormal basis set in the Row Space, that maps to an orthonormal basis set U in the Column Space scaled by the Singular Values Σ , when transformed by the matrix A!
 - $U^TA = \Sigma V^T$, so U^T transforms the columns of A, so it is termed *Column Space* (See Jonathon Shlens, https://arxiv.org/abs/1404.1100).
 - $V^TA^T = \Sigma^TU^T$, so V^T transforms the rows of A, so V is termed to be in the *Row Space* (See Jonathon Shlens, https://arxiv.org/abs/1404.1100).
 - \circ Geometrically, we can consider U and V to be rotations, and Σ to be scaling. So every matrix can be represented as a rotation, followed by scalar stretching, then another rotation.

2. SVD Proof:

- 0. $A=U\Sigma V^T$ can be shown by looking at the matrix A^TA and AA^T . Clearly both are symmetric matrices (i.e., it is its own transpose), and are square (n x n, and m x m in size, respectively).
- 1. First let's look at A^TA . Since it is square, we can find a set of eigenvectors and eigenvalues such that $(A^TA)V=V\Lambda_v$, where V is the matrix whose columns are the eigenvectors, and Λ_v is the diagonal matrix with the corresponding eigenvalues.
- 2. Since A^TA is symmetric, V is an orthogonal (orthornormal) matrix (or can be chosen to be so) since the eigenvectors of symmetric matrices are orthogonal and can be chosen to be orthonormal.
 - (Source: Spectral Theorem states that a symmetric matrix can be written as $Q\Lambda_uQ^T$

where Q is an orthogonal matrix. See how symmetric matrices have an orthonormal eigenbasis: dept.math.lsa.umich.edu/~speyer/LinearAlgebraVideos/Lecture10a.pdf)

- 3. Also $\Lambda_{v,u}$ is Real because A^TA is symmetric. (Source: <u>https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/resources/lecture-25-symmetric-matrices-and-positive-definiteness/</u> shows that eigenvalues are real for symmetric matrices.)
- 4. In fact, A^TA is also positive semi-definite (PSD), i.e. its eigenvalues are positive or equal to 0.
 - Proof: For any vector $v, v^TA^TAv = (Av)^T(Av) = ||Av||_2^2 \geq 0$ by definition of the l_2 norm. Now suppose v is any eigenvector of A^TA , with eigenvalue λ . Then $0 \leq v^TA^TAv = v^T(A^TAv) = \lambda v^Tv = \lambda ||v||_2^2$. Since $||v||_2^2 \geq 0$, λ must necessarily ≥ 0 as well. Q.E.D. (Proof for A^TA being PSD was not explicitly found in the MIT Strang lecture videos, but the initial part of the proof was found at https://statisticaloddsandends.wordpress.com/2018/01/31/xtx-is-always-positive-semidefinite/)
- 5. Intermediate Summary:
 - Putting this all together, we have an n x n matrix

$$(A^TA) = V\Lambda_vV^T,$$

where V is orthogonal, and Λ_v is diagonal and contains the eigenvalues corresponding to V that are ≥ 0 .

Similarly, the m x m matrix

$$(AA^T) = U\Lambda_u U^T$$
,

where U is orthogonal, and Λ_u is diagonal and contains the eigenvalues corresponding to U that are ≥ 0 .

- Note that the eigenvalues of Λ_u and Λ_v are the same except for that one may have zero(s) that is(are) not present in the other. These contribute to the Null Space.
- 6. Defining Σ :
 - ullet If m=n, then $\Sigma\equiv \Lambda_{v,u}$, since the 2 matrices should be the same.
 - If $m \neq n$, to accommodate the $\Lambda_{v,u}$ different sizes, let's define Σ to be m x n in size. Its top-left part will be the square root of $\Lambda_{v,u}$, whichever is smaller in dimensions. The rest will be filled with 0. (Note: Here in taking the square root, we have used the fact that $\Lambda_{v,u} \geq 0$, which comes from A^TA or AA^T being positive semi-definite.)
 - Now note that $\Sigma\Sigma^T=\Lambda_u$, and is m x m in size. Similarly $\Sigma^T\Sigma=\Lambda_v$, and is n x n in size.

- 7. Putting pieces together for SVD:
 - Recall $(A^TA)V=V\Lambda$, which will be our starting point. This can be written as $(A^TA)=V\Lambda_vV^T$, since V is orthogonal.
 - Now insert Σ : $(A^TA) = V\Lambda_vV^T = V\Sigma^T\Sigma V^T$.
 - Since U is orthogonal, $U^T U = I_m$, , where I_m is the m x m Identity Matrix.
 - $\blacksquare \ \, \mathsf{Now insert}\, I_m : (A^TA) = V \Sigma^T \Sigma V^T = V \Sigma^T I_m \Sigma V^T = V \Sigma^T U^T U \Sigma V^T.$
 - Factor: $(A^TA) = V\Sigma^TU^TU\Sigma V^T = (U\Sigma V^T)^T(U\Sigma V^T)$ $\therefore A = (U\Sigma V^T)$

.

- 3. How to decompose A using SVD:
 - $\circ~$ Using the proof of SVD above, we now know how to explicitly construct U,V,Σ such that $A=(U\Sigma V^T).$
 - $\circ~$ Solving V: Find eigen solutions of (A^TA) , i.e., $(A^TA)V=V\Lambda_v.$
 - \circ Solving U: Find eigen solutions of (AA^T) , i.e., $(AA^T)U=U\Lambda_u$.
 - \circ Solving Σ : Take the square root of $\Lambda_{v,u}$, fill with zeros to make it same size as A.
 - lacktriangledown Note: For Principal Component Analysis (PCA), build U,V,Σ so that the singular values are in descending order from top to bottom, which is proportional to the "importance" of the components.

Principal Component Analysis (PCA)

- 0. References:
 - 1. Jonathon Shlens, "A Tutorial on Principal Component Analysis," arXiv:1404.1100 (2014) https://arxiv.org/abs/1404.1100
 - Shlens uses (n) instead of (n-1) for the denominator in the variances and covariances. The latter is typically used in other sources, likely because others consider sampling of a population, whereas Shlens may be assuming the whole population is used (Shlens does mention this "practice" in footnote 2). In my summary, I have corrected this to (n-1),
 - SNR defined by Shlens is the ratio of the Signal Variance to the Noise Variance. While this seems to be what is necessary for the toy spring example provided, I don't think this is widely accepted as the definition of SNR. Typically in engineering, SNR is defined as Signal/Noise = (Mean of Signal)/(Standard Deviation of Noise). Perhaps a different word than "SNR" may be appropriate for the PCA paper.

2. Jeff Jauregui, "Principal component analysis with linear algebra" (August 31, 2012) https://www.math.union.edu/~jaureguj/PCA.pdf

1. PCA Goal:

- "PCA provides a roadmap for how to reduce a complex data set to a lower dimension to reveal the sometimes hidden, simplified structures that often underlie it."
- "The goal of principal component analysis is to identify the most meaningful basis to reexpress a data set. The hope is that this new basis will filter out the noise and reveal hidden structure."
 - "Is there another basis, which is a linear combination of the original basis, that best re-expresses our data set?"

2. PCA Assumptions:

- "By positing reasonably good measurements, quantitatively we assume that directions with largest variances in our measurement space contain the dynamics of interest."
 - This means that the features with larger variances are more important. This sometimes is not necessarily true, and at times require scaling to correct.

3. Covariance Matrix:

- Suppose we have m features (original m measurement "basis" vectors), and n measurements (samples of measurements, for example, at different times).
- \circ Let X be an m x n matrix containing all measurement data, where each of the m rows represents all measurements for the mth feature (or measurement type). Also the mean of each row (of n measurements or samples) is subtracted from each row (so each row of X has 0 mean).
- $\circ~$ Covariance Matrix $C_X \equiv rac{1}{n-1} X X^T$
 - C_X is an m x m matrix.
 - ullet Diagonals of C_X are the variances- Large values correspond to interesting structure, per assumption.
 - Off-diagonals of C_X are the *covariances* Larger values correspond to redundancy (since the corresponding features can predict each other, and hence one can be removed with little impact).
- 4. PCA and newly transformed covariance matrix, C_Y , from C_X :
 - Goal of PCA: Find a transformation of basis so that the diagonals (variances, or relevant signals) of the new covariance matrix is maximized, and the off-diagonals (covariances, or redundancy) are minimized.

- ullet Explicitly, find an orthonormal transformation Y=PX such that the covariance matrix in Y, i.e. C_Y , is a Diagonal Matrix.
- Also let's sort by importance, using variance, so that each successive dimension is ranked in order (top-left being most important, and bottom-right element being least important).

5. PCA Construction:

- 0. (Shlens' paper describes eigenvector decomposition and SVD separately, which was confusing and disjointed for me. So I have re-organized this using SVD.)
- 1. Let X be the original m x n measurement matrix (m features/types, n samples/measurements). (Note, this is opposite of the SVD notes above)
- 2. Let $Y\equiv \frac{1}{\sqrt{n-1}}X^T$ be the n x m matrix (Y=A in the SVD notes, with size index flipped).
- 3. $Y^TY=rac{1}{n-1}XX^T=C_X$ (the m x m Covariance Matrix).
- 4. By SVD, $(Y^TY) = V\Lambda_v V^T = C_X$ (V is an m x m matrix)
- 5. Rearranging, $\Lambda_v = V^T C_X V$.
- 6. So V transforms C_X into the diagonal matrix Λ_v as desired by PCA!
 - ullet The columns of V are the orthonormal eigenvectors of C_X (since $C_XV=V\Lambda_v$). "Therefore, the columns of V are the principal components of X."
 - In other words, V spans the row space $Y\equiv \frac{1}{\sqrt{n-1}}X^T$, and hence spans the column space of X.
- 7. Converting SVD for $A=X^T$ to SVD for the new matrix $Y=\frac{1}{\sqrt{n-1}}X^T$:
 - U, V remain the same.
 - Only the singular values need to be scaled to $\Sigma o rac{1}{\sqrt{n-1}} \Sigma$.
 - ullet This can be seen, or rather justified, from the definition of SVD: $A=U\Sigma V^T$.
 - Caution: It is worth confirming that the SVD algorithm used confirms this. For NumPy.linalg.svd in 03/2025, this was true.
 - Python code to check given below.

```
# Do SVD on Y = 1/\sqrt{n-1} A:
U, s, Vh = np.linalg.svd(A, full_matrices=True)
Y = A / np.sqrt(A.shape[0] - 1)
Unew, snew, Vhnew = np.linalg.svd(Y, full_matrices=True)
# Compare
print('Is SVD U same from A vs. Y = 1/\sqrt{n-1} A?', np.allclose(U, Unew))
print('Is SVD s same from A vs. Y = 1/\sqrt{n-1} A?', np.allclose(s, snew))
print('Is SVD Vh same from A vs. Y = 1/\sqrt{n-1} A?', np.allclose(Vh, Vhnew))
```

```
# Check that s is scaled:
print('Is SVD s from Y = 1/\sqrt{n-1} A, same as s_original/\sqrt{n-1} \
where s_original is the SVD s from A?', \
np.allclose(s/np.sqrt(Xused.shape[0] - 1), snew))
```